Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622626

RESUMO

Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.


Assuntos
Ciclídeos , Microplásticos , Animais , Microplásticos/metabolismo , Microplásticos/farmacologia , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Ecossistema , Fígado/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Interleucina-6/metabolismo
2.
Microsc Microanal ; 29(5): 1774-1790, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37648416

RESUMO

Henneguya species are myxozoans, a suborder of Cnidaria, which can affect the gills and extrarespiratory organs of the African sharptooth catfish, Clarias gariepinus. This research describes natural infection-induced histological alterations caused by the Henneguya species present. The Henneguya species were also identified molecularly using DNA sequenced from infected tissue cysts, and phylogenetically analyzed. Clinical investigations revealed cyst-like nodules on the fish gill filaments and extrarespiratory organs. Within a milky fluid inside the cysts were several Henneguya-like spores. Henneguya sp. infested 27.5% of the fish, with the highest prevalence in the gills compared to the extrarespiratory organs. The Henneguya species parasitized the gill and the dendritic tissues, resulting in histopathological characteristics. The plasmodia's developmental stages resulted in destructive damage which manifested as marked necrosis, which was replaced by a focal aggregation of inflammatory cells. Amplification of the 18S ribosomal DNA from the fish parasites was followed by sequencing, which confirmed their identities as new species Henneguya qenabranchiae n. sp. and Henneguya qenasuprabranchiae n. sp. with 99.53 and 99.64% identities, respectively, to Henneguya sp. 1 HS-2015. The two C. gariepinus myxozoans shared some characteristics based on morphologic and phylogenetic analysis as previously published, where it was proposed that they were a sister lineage to Henneguya species in Egypt, and it is now proposed that they are new species.

3.
Dis Aquat Organ ; 148: 43-56, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200158

RESUMO

As part of a study on parasitic infection in the African sharptooth catfish Clarias gariepinus, we found cysts of varying sizes in the stomach and intestine that contained myxospores with morphological features resembling those of the genus Henneguya. The present investigation was carried out with data on spore morphology and histopathology. Additionally, the myxozoan was identified using a molecular-based approach with 18S small subunit rDNA sequences. Based on the morphological characterization and tissue specificity of Myxozoa, 2 species of Henneguya were identified in the catfish stomach and intestine. Several histopathological changes were observed in the intestine which may affect fish performance and survival. The phylogenetic position of nucleotide sequences of the Henneguya species identified here were clustered with other fish-infecting Henneguya species. These sequences were deposited in GenBank. It appears that they potentially represent 2 species, denominated Henneguya sp. 1 and Henneguya sp. 2 according to the samples originating from the stomach and intestine, respectively. Although future investigations are needed for detailed morphological and molecular descriptions, this study documents the likely occurrence of infection with Henneguya noted for the first time, to our knowledge, in the digestive system of C. gariepinus in Egypt.


Assuntos
Peixes-Gato , Doenças dos Peixes , Myxozoa , Doenças Parasitárias em Animais , Animais , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Intestinos/parasitologia , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , Filogenia , Rios
4.
EXCLI J ; 16: 1308-1318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333132

RESUMO

Contamination of fish by fungi and their mycotoxins poses major health concerns to human and animals. Therefore, our study was aimed to investigate Aspergillus flavus (A. flavus) infections and the levels of aflatoxins in Nile tilapia, Oreochromis niloticus (O. niloticus), and fish feed. Samples from O. niloticus and fish feed (n=25 for each) were randomly collected from private fish farms at Qena province, Egypt, during the winter season. Different Aspergillus spp. were detected in 60 % and 64 % of O. niloticus and fish feed, respectively. HPLC-based analysis revealed aflatoxin-producing activity in 75 % and 83 % of A. flavus isolates from fish and fish feed, respectively. While 96 % of O. niloticus muscles and fish feed samples were contaminated with aflatoxins, the detected levels were below the permissible limits, i.e. 20 µg/kg. Moreover, experimental infection with toxicogenic A. flavus isolates was conducted to evaluate their pathogenicity in O. niloticus. Expectedly, experimental infections of O. niloticus with A. flavus were associated with several clinical symptoms reported in naturally infected fish, e.g. yellow coloration with skin ulceration, hemorrhagic ulcerative patches on gills and skin, corneal opacity, fin rot and abdominal distention. Furthermore, aflatoxicogenic A. flavus isolates from fish were sensitive to herbal clove oil. Even though the measured levels of aflatoxin were below permissible limits, effort should be placed on further reduction of exposure to genotoxic and carcinogenic mycotoxins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA